Fluoroanions and cations in the HF-SbF₅ superacid system. A ¹⁹F and ¹H NMR study

Jean-Christophe Culmann,† Michel Fauconet,‡ Roland Jost and Jean Sommer*

Laboratoire de Physico-Chimie des Hydrocarbures (CNRS UMR 7513), Centre de Recherches Chimie, Université Louis Pasteur, 1, rue Blaise Pascal, 67008 Strasbourg, France

Received (in Strasbourg, France) 2nd March 1999, Accepted 3rd June 1999

The ionic composition of the HF-SbF₅ superacid system has been investigated by ¹H and ¹⁹F high field NMR. The anionic distribution over the whole composition range could be directly calculated from the ¹⁹F NMR spectra. The cationic distribution was then estimated on the basis of charge balance. When the concentration of SbF₅ in HF was higher than 20 mol%, increasing amounts of nonassociated SbF₅ appeared. This change in composition can be linked to the change in reactivity of the superacid system in the activation process of small alkanes.

The awarding of the Nobel Prize in Chemistry to George Olah in 1994 acknowledged the important role of superacids as unusual reagents and solvents.^{1,2} Liquid superacid media, which are generally a mixture of fluorinated Lewis acids such as SbF₅, TaF₅, AsF₅, etc. and fluorinated Broensted acids such as HF, HSO₃F, CF₃SO₃H, etc. are by definition³ more acidic than 100% sulfuric acid ($H_0 \leqslant -12$). Acidities as high as $H_0 \sim -23$ have been measured for anhydrous hydrogen fluoride, fluorosulfonic acid and triflic acid containing 10, 30 and 40 mol% SbF₅, respectively; further increasing the amount of SbF₅ is not accompanied by an increase in acidity. Since the first quantitative study by Kilpatrick and Lewis,⁵ the ionic composition of the strongest superacid system, HF-SbF₅, has been investigated by various analytical techniques. The results obtained from electric conductivity,5 cryoscopy⁶ and vapor phase measurements,⁷ as well as infra-red8 and 19F NMR spectroscopy,9 all agree that SbF5 is fully ionized in dilute HF solutions, first yielding the SbF₆ anion. With increasing concentration of SbF₅, increasing amounts of polymeric anions ($Sb_2F_{11}^-$, $Sb_3F_{16}^-$, etc.) are formed. According to an IR spectroscopic study,^{8b} the predominant cationic species should be H₃F₂⁺ for concentrations up to 40 mol% SbF₅, whereas at higher concentrations the H₂F⁺ ion was observed. However, with the exception of this IR study and in contrast with NMR studies on weaker superacids,10 most of the published work relates to dilute HF solutions and is more qualitative than quantitative in nature.

Due to its large chemical shift range, ¹⁹F NMR has proven to be very useful as early as the late fifties, when Hoffmann and coworkers, ¹¹ with a 56.7 MHz instrument, investigated liquid SbF₅ and assigned to it the polymeric *cis*-fluorine-bridged structure. The same instrumentation was used by Gillespie and Moss⁹ to study the HF–SbF₅ system containing up to 40 mol% of SbF₅, in which they observed the SbF₆⁻ and Sb₂F₁₁⁻ anions. Later, with 94.1 MHz fluorine NMR, Gillespie's group described the structure of the polyanions Sb_nF_{2n+1}⁻ and their adducts with various weak bases in a series of papers. ¹²

With all these data available, it is surprising that, in contrast with other superacids such as fluoro and perfluoroalkylsulfonic acids, the anionic composition of the

strongest superacid system available, HF–SbF₅, has not been reported in the literature. Considering that the limit of superacidity is already reached with less than 10 mol% SbF₅ in HF,⁴ whereas the reactivity of this system towards alkanes increases steadily with increasing SbF₅ concentration,¹³ we found it of interest to reinvestigate the ionic composition of the HF–SbF₅ system over the whole concentration range with the presently available high field 376 MHz¹⁹F NMR spectroscopy.

Experimental

Anhydrous hydrogen fluoride (Matheson) was transferred into a 500 mL Kel-F flask from which it was distilled to the reactor as needed. Antimony pentafluoride from Allied Chemical was purified by triple distillation under dry nitrogen in a Pyrex apparatus in which it was stored until use. HF–SbF $_5$ solutions were obtained by distilling the pentafluoride into a weighed amount of HF in a Kel-F trap equipped with a Teflon valve and reweighing the trap. Sulfuryl fluorochloride (SO $_2$ ClF) was prepared from ammonium fluoride and sulfuryl choride following ref. 14 and stored on P_2O_5 in a Pyrex flask.

Caution. Handling anhydrous HF needs extreme caution to protect skin and eyes. It can cause severe burns, which may not be visible or painful for several hours.

NMR spectra were recorded on a Bruker AM400 spectrometer. The $HF-SbF_5$ solutions were analyzed at temperatures between -10 and $-90\,^{\circ}C$ using quartz NMR tubes (5 mm OD). In order to compare all NMR spectra at the same temperature ($-60\,^{\circ}C$) we used SO_2ClF to keep the viscosity of the solution at a low enough level. ¹⁹F chemical shifts were always measured using SO_2ClF as internal standard (99.1 ppm downfield from $CFCl_3$).

Results and discussion

The anions $Sb_nF_{5n+1}^-$

HF has a very small autoprotolysis constant of the order of 10^{-12} at $0\,^{\circ}$ C. As a consequence, a steep rise in acidity is noticed following the ionization reaction:¹⁵

$$SbF_5 + nHF \rightarrow SbF_6^- + H(HF)_{n-1}^+$$

The cation has been written most often as H_2F^+ for simplicity but as we will see below, it is rather a polymeric, strongly

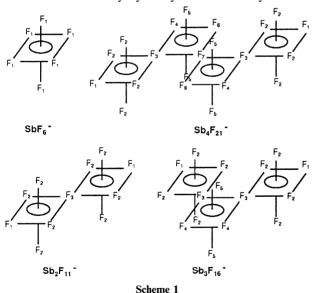
[†] Present address: European Patent Institute, D-80297 Munich, Germany.

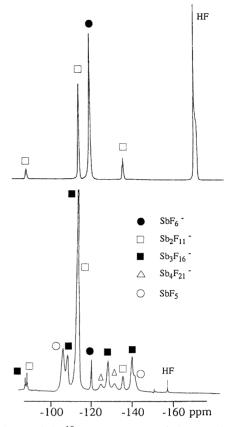
[‡] Present address: ATOCHEM, 57500 St-Avold, France.

hydrogen bonded species. The hexafluoroantimonate ion SbF₆⁻, which is generated first, can be further complexed when more SbF₅ is added to the HF solution:

$$SbF_6^- + SbF_5 \rightarrow Sb_2F_{11}^-$$

 $Sb_2F_{11}^- + SbF_5 \rightarrow Sb_3F_{16}^-$
 $Sb_3F_{16}^- + SbF_5 \rightarrow Sb_4F_{21}^-$


All these ions have been previously identified¹² and their ¹⁹F NMR lines have been assigned on the basis of homonuclear ¹⁹F coupling constants with 94.1 MHz NMR, but the higher fields now available overcome the problem of overlapping and facilitate the quantitative analysis of the individual components.


The structure and the fluorine atom numbering of the fluoroantimonate ions and adducts are presented in Scheme 1. We use the numbering pattern originally suggested by Dean and Gillespie, 12b which always starts from the terminal fluorine opposite to a fluorine bridge, or, if this is not present, opposite to a donor molecule and gives the same number to chemically equivalent fluorines. We have collected in Table 1 the chemical shifts of the various fluorine nuclei for each species.

Two characteristic 376 MHz 19 F NMR spectra are shown in Fig. 1. As can be seen, characteristic lines due to the strong magnetic field are available for quantitative measurements, even at high SbF₅ concentration when all four ions are present. The variation of the composition of the HF-SbF₅ system as a function of the concentration of SbF₅ is presented in Fig. 2. For SbF₅ concentrations lower then 10 mol%, SbF₆⁻ is practically the only anionic species present. In the concentration range of 10 to 22 mol% SbF₅ in HF the anions are essentially SbF₆⁻ and Sb₂F₁₁⁻, which are in slow equilibrium on the NMR time scale:

$${\rm SbF}_5 + n{\rm HF} \rightarrow {\rm SbF}_6^- \cdot {\rm H}^+({\rm HF})_{n-1}$$

 ${\rm SbF}_5 + {\rm SbF}_6^- \cdot {\rm H}^+({\rm HF})_{n-1} \stackrel{\textstyle >}{=} {\rm Sb}_2 {\rm F}_{11}^- \cdot {\rm H}^+({\rm HF})_{n-1}$

The structure of ${\rm Sb_2F_{11}}^-$ anions in fluoronium salts has been confirmed recently by X-ray structural analysis of two

Fig. 1 Characteristic 19 F NMR spectra of the HF–SbF $_5$ system. Top: 17.3 mol% SbF $_5$; bottom: 77.1 mol% SbF $_5$.

ionic adducts corresponding to $SbF_5 \cdot 1.5$ HF and $SbF_5 \cdot HF$. We notice that the formation of the polymeric ions $Sb_3F_{16}^-$ and $Sb_4F_{21}^-$ occurs for higher concentrations of the Lewis acid. These results are somewhat more precise than

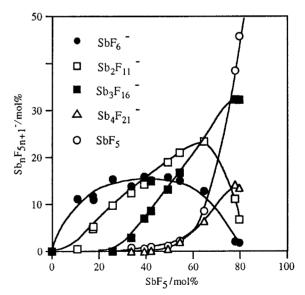


Fig. 2 The anionic composition of the HF-SbF₅ system.

Table 1 ¹⁹F chemical shifts of fluoroantimonate ions (δ referenced to external CFCl₃)

	$\mathbf{F_1}$	F_2	F_3	F_4	F_5	F_6	F ₇
${{\rm SbF_6}^-}\atop{{\rm Sb_2F_{11}}^-}\atop{{\rm Sb_3F_{16}}^-}\atop{{\rm Sb_4F_{21}}^-}$	-122.3 -138.7 -139.7 -141.3	-116.7 -111.9 -111.5	-90.4 -88.3 -88.3	- 127.2 - 123.9	$-107.1 \\ -104.6$	-119.3	-82.2

those of Bonnet et al., who did not detect polymeric species larger than ${\rm Sb_2F_{11}}^-$ when the concentration of ${\rm SbF_5}$ in HF was below 40 mol%.

In Fig. 3 we have plotted the amount of HF remaining after ionization and the total amount of anionic species as a function of SbF₅ concentration in HF. If we compare these curves with those published for the FSO₃H-SbF₅ and CF₃SO₃H-SbF₅ systems by Commeyras et al. 10b we notice a striking difference. In both sulfonic acid based systems, complete ionization of the acids was observed when the concentration of SbF₅ reached 50 mol%. A steady increase of the concentration of the monoadduct $RSbF_5^-$ (R = FSO_3 , CF₃SO₃) was observed with a maximum at 50 mol% SbF₅, the $RSb_2F_{10}^-$ species (diadduct) appeared only at SbF_5 concentrations higher than 50 mol%. In contrast, in the HF-SbF₅ system the 19F NMR signal of the un-ionized HF can be observed up to 80 mol% SbF₅. According to Fig. 2 the diadduct Sb₂F₁₁ starts to appear at 10 mol% and the triadduct at 25 mol%. In this superacid SbF₅ prefers to complex the fluoroantimonate ions instead of ionizing more HF and the total concentration of the anionic species remains lower over the whole concentration range. The large difference in superacidity between the HF based and the fluorosulfonic acid based systems is probably also related to the difference in anionic composition, in addition to the presence of more basic oxygen lone pairs in the sulfonic superacids.

On the other hand, an interesting observation was the presence of an initially small but increasing amount of uncomplexed SbF₅ observed for concentrations above 20 mol% SbF₅ in HF. The presence of this un-ionized SbF₅ can help us to rationalize the concentration dependent selectivity observed when isobutane is reacted with the HF-SbF₅ system. ^{13a,b} The conversion of isobutane in liquid superacids (Scheme 2) can be monitored either by measuring the amount of hydrogen produced or by measuring the amount of pivalic ester obtained

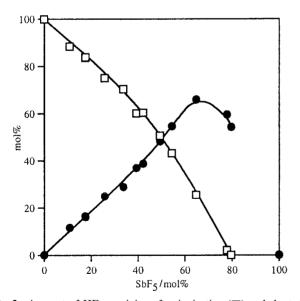


Fig. 3 Amount of HF remaining after ionization (\square) and the total amount of anionic species (\bullet) as a function of SbF₅ concentration in HF.

$$H_3C \xrightarrow{CH_3} H_{---}F$$
 $SbF_3 + 2 HF + C_4H_9^+$

Scheme 3

by trapping the ions with carbon monoxide followed by quenching with excess ethanol. 13c It was reported 13 that for concentrations up to 20 mol% SbF_5 , reaction (1) in Scheme 2 was purely protolytic as the amount of hydrogen produced was equivalent to the amount of ester. For concentrations higher than 25 mol% SbF_5 , the hydrogen production decreased drastically whereas the production of ethyl pivalate continued to increase. The production of SbF_3 , observable as a white precipitate, indicated that SbF_5 was reduced during isobutane conversion with production of HF (see Scheme 3), as earlier suggested by Olah *et al.* 17 We assume that this change in product distribution is related to the change in composition of the superacid as at higher concentrations in HF , SbF_5 becomes available for direct participation in the activation process.

A related observation was made when HF was replaced by DF: at SbF₅ concentrations below 20 mol% a reversible protonation of the alkanes was observable via H/D exchange of the hydrogens of isobutane. This exchange is about 20 times faster than protolysis.¹³ At higher concentrations the exchange process becomes negligible in comparison with ionization.¹⁸

On the other hand, we have also shown earlier⁴ that the acidity of HF-SbF₅ is close to its limit ($H_0 \approx -23$) in the 15–20 mol% SbF₅ range. Thus, increasing the concentration of SbF₅ above 20 mol% should not result in an increase of the rate of protolysis.

Cationic composition of the HF-SbF₅ system

Hydrogen fluoride plays a double role as acid and solvent. The presence of the Lewis acid favors the dissociation of the acid as the fluoride ion is complexed by SbF₅. In this way a mixture of larger anions is generated:

$$nSbF_5 + HF_{excess} \rightarrow Sb_nF_{5n+1}^- + H^+(HF)$$

Due to charge balance the formation of each anion, whatever its size, is accompanied by the generation of one proton.

The second role of HF is the solvation of these protons by its un-ionized fraction:

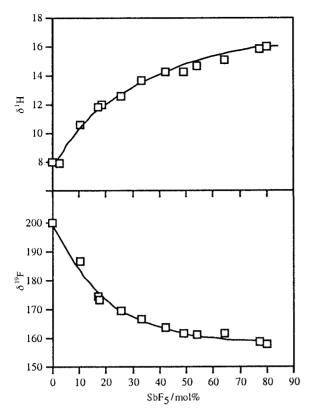
$$nHF + H^+ \rightarrow H^+(HF)_n$$

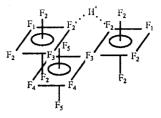
For this reason, the structure of these cationic species is also dependent on the molar ratio of Lewis acid to HF. Some of these fluorinated cations have been described in the literature.

At high dilution, the remaining HF molecules are organized as a polymeric structure associated by hydrogen bonding.⁹

 1 H and 19 F chemical shifts of HF and H $^{+}$ (HF)_n cations. In both 1 H and 19 F spectra, even at temperatures as low as $-120\,^{\circ}$ C, only one solvent signal was observed. The inter- and intramolecular exchange processes between the cationic species (H_{2} F $^{+}$, H_{3} F $_{2}$ $^{+}$, ..., H_{n+1} F $_{n}$) are indeed too fast, on the NMR time scale, to allow the observation of separate signals.

In Fig. 4, we present the variation of the 1 H chemical shift of the solvated proton $H^{+}(HF)_{n}$ as a function of the molar concentration of SbF_{5} in the superacid medium. The signal appears at 8.1 ppm for pure HF and with higher concentrations of SbF_{5} shifts to lower field, reaching 16 ppm when the concentration of SbF_{5} is 80 mol% in $HF-SbF_{5}$. The deshielding observed with increasing concentration of SbF_{5} has been rationalized by a progressive desolvation of the protons, inducing a concentration of the positive charge in smaller $H^{+}(HF)_{n}$

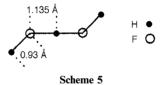



Fig. 4 Variation of the ¹H (top) and ¹⁹F (bottom) chemical shifts of HF with SbF₅ concentration.

entities.¹⁹ The variation of chemical shift is more pronounced in diluted solutions, in which each molecule of SbF_5 leading to SbF_6^- creates a positive charge. When the concentration of Lewis acid increases, a higher number of SbF_5 molecules is needed to observe the same effect due to progressive polymerization of the anions (two molecules of SbF_5 when the dimeric $Sb_2F_{11}^-$ anion is formed, three molecules when an $Sb_3F_{16}^-$ anion is created, *etc.*).

Similar observations can be noted when the $^{19}{\rm F}$ chemical shift of HF is plotted *versus* the concentration of SbF₅ (Fig. 4): the $^{19}{\rm F}$ chemical shift varies gradually from 200 ppm (pure HF) to 158 ppm (80 mol% SbF₅).

With increasing concentration of SbF₅, the relative area of the HF signal diminished, vanishing completely when the concentration reached 80 mol% SbF₅. At this point, when no HF is left in the solution, a proton signal is nevertheless observed at 16 ppm in ¹H NMR. To our knowledge, this is the first NMR assignment of such an acidic species in liquid solution. Up to now the cationic species described in the literature, on the basis of IR observation or direct X-ray structural analysis, involved at least one HF solvent molecule. As in the condensed phase the proton cannot be naked, we assume that at these concentrations where no free HF is present, the proton is directly solvated by the Sb₃F₁₆⁻ anion. We suggest a structure (Scheme 4) in which the proton could be chelated between two fluorine atoms. In this structure the F-H-F distance (2.6 Å) is close to that measured for crystal structures of SbF₅ · HF adducts. 16


The cationic species. For many years the existence of positively charged $H^+(HF)_n$ species has been the subject of theoretical and experimental studies. In analogy with H_3O^+ , the existence of the H_2F^+ ion has long been postulated, in order to rationalize the conductivity of superacid solutions such as $HF-SbF_5$ and $HF-BF_3$. The first observation of this ion has been reported by Van Huong *et al.*, based on IR observations. ^{8a} Leibovici, performing semi-empirical and *ab initio*

Scheme 4

calculations,²⁰ and Dierksen *et al.*,²¹ with the SFC-LCAO-MO method, have calculated the structure of this cation. Bonnet and Mascherpa, using infrared spectroscopy,^{8c} reported its observation for concentrations higher than 40 mol% SbF_5 in liquid $\mathrm{HF}\mathrm{-SbF}_5$ mixtures and claimed that it was the only cation observed at concentrations higher than 85 mol% SbF_5 . This latter assumption is not in agreement with our NMR spectra, which show the disappearance of the HF signal in the ¹⁹F NMR spectra when the concentration reaches 80 mol% SbF_5 . More recently, Mootz and Bartmann¹⁶ isolated crystals of $\mathrm{H_2F^+}$ · $\mathrm{Sb_2F_{11}}^-$, corresponding to the ionic adduct SbF_5 · HF. According to these studies, $\mathrm{H_2F}^+$ is bent, presenting an elongated HF bond compared to HF.

The ion ${\rm H_3F_2}^+$, resulting from the solvation of one proton by two molecules of HF, has been studied theoretically. 20,21 It was found that the $trans\ C_2h$ structure with a central hydrogen (Scheme 5) was the most stable. Bonnet and Mascherpa beserved the typical absorption bands of this ion in the liquid phase and concluded that between 0 and 20 mol% mol SbF₅ in HF-SbF₅, ${\rm H_3F_2}^+$ solvated by HF molecules was the predominant species. In the range 20–40 mol% SbF₅, only ${\rm H_3F_2}^+$ was observed. They postulated the existence of ${\rm H_3F_2}^+$ vSb₂F₁₁ and ${\rm H_3F_2}^+$ vSb₃F₁₆ adducts in this concentration range and suggested that for concentrations greater than 40 mol% SbF₅, ${\rm H_3F_2}^+$ was progressively replaced by ${\rm H_2F^+}$. In a recent study, this ion, associated with Sb₂F₁₁ in the ionic adduct SbF₅ · 1.5 HF, has also been characterized by X-ray diffraction. ¹⁶

The existence of larger $H_{n+1}F_n^+$ cationic species was suggested on the basis of the following observatiosn from DTA studies performed by Bonnet *et al.*:^{8b} SbF₅ · 4HF, SbF₅ · 6HF and SbF₅ · 9HF.

Recently, Mootz and Bartmann, studying the melting diagram of the $HF \cdot SbF_5$ system, found a new low-melting adduct $SbF_5 \cdot 7HF$ described as a fluoronium salt, $(H_7F_6)SbF_6$. ^{16b} They concluded that the novel H_7F_6 cation is formed as an unbranched chain by very strong hydrogen bonds between the respective F atoms, which become weaker from the center to the end.

The contribution of NMR to the study of the cationic species.

Due to fast proton exchange the NMR technique cannot bring direct information about the cationic composition of the medium; however, if we make some assumptions, it is possible to estimate the nature of the different cationic species. If, assuming that only the three species observed by IR $(H_3F_2^+, H_2F^+ \text{ and } HF)$ do exist in the liquid phase in the 0-40 mol% SbF_5 range, we can calculate the ¹⁹F chemical shift variation on the basis of the chemical shifts measured for HF and H_2F^+ . We obtain the curve shown beside the experimental one in Fig. 5. It is obvious that the observed discrepancy is due to the presence of other $H_{n+1}F_n^+$ species. It is clear that if we take into account the presence of even heavier cationic

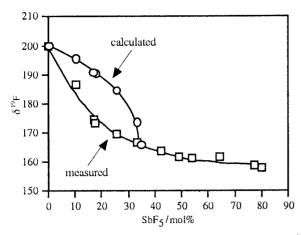


Fig. 5 Comparison of experimental (\square) and calculated (\bigcirc) ¹⁹F chemical shifts for the HF–H₂F⁺–H₃F₂⁺ system.

Table 2 Calculated concentration limits for the existence of various cations in HF

Species	mol% SbF ₅
$H^+ \leftrightarrow H_2F^+$	80
$H_2F^+ \leftrightarrow H_3F_2^+$	35
$H_3F_2^+ \leftrightarrow H_4F_3^+$	27.5
$H_4F_3^+ \leftrightarrow H_5F_4^+$	22.5
$H_5F_4^+ \leftrightarrow H_6F_5^{-+}$	18.5
$H_6F_5^+ \leftrightarrow H_7F_6^+$	16
$H_7F_6^{+} \leftrightarrow H_8F_7^{+}$	14
: "	<u>:</u>

species, the fit between calculated and theoretical chemical shifts will be even better. In fact, the continuous variation in chemical shifts does not support the existence of only two or three cationic species but is in good accord with a continuous variation of solvation of the proton by as many HF molecules as available.

As it is apparent from the NMR spectra that the proton exchange between the different cations $H_{n+1}F_n^+$ is fast $(k \gg 10^{-3} \text{ at } -60\,^{\circ}\text{C})$, we assume that on average the solvation of the proton is always at a maximum and that the probability of the coexistence of the species $H^+(HF)_n$ and $H^+(HF)_{n+2}$ can be neglected. On this basis, the concentration of protons being equal to the concentration of the anions, the protons will be solvated by as much HF as is available after ionization. Thus the theoretical concentration limits of the different positive species can be estimated as reported in Table 2.

Conclusion

376 MHz ¹⁹F NMR has been used to measure the concentration dependent anionic composition of the HF-SbF₅ superacid system. In comparison with other superacids, the ionization of the HF requires larger amounts of Lewis acid. From the anionic composition and on the basis of charge balance we tried to estimate the cationic composition of this medium. However, on the NMR time scale no definite concen-

tration zone could be detected in which only one of the $\mathrm{H}^+(\mathrm{HF})_n$ species exists independently and it appears that the change in solvation via strong hydrogen bonding is a continuum. The presence of increasing amounts of un-ionized SbF₅ at concentrations higher than 20 mol% in HF rationalizes the change in selectivity in small alkane activation by the superacid system.

References and notes

- 1 The 1994 Nobel Prize of chemistry was awarded to George Olah (UCLA) by the Swedish Academy of Sciences for his contribution to carbocation chemistry.
- 2 G. A. Olah, G. K. S. Prakash and J. Sommer, Superacids, Wiley, New York, 1985.
- 3 R. J. Gillespie and T. E. Peel, Adv. Phys. Org. Chem., 1972, 9, 1.
- (a) D. Touiti, R. Jost and J. Sommer, J. Chem. Soc., Perkin Trans.
 1986, 1793; (b) R. Jost and J. Sommer, Rev. Chem. Intermed.,
 1988, 9, 171.
- 5 (a) M. Kilpatrick and T. J. Lewis, J. Am. Chem. Soc., 1956, 78, 5186; (b) H. H. Hyman, T. J. Lane and T. A. O'Donnel, in Abstracts of the 145th National Meeting of the American Chemical Society, American Chemical Society, Washington, D.C., 1963, p. 63f; (c) H. H. Hyman, L. A. Quaterman, M. Kilpatrick and J. J. Katz, J. Phys. Chem., 1961, 65, 123.
- 6 P. A. W. Dean, R. J. Gillespie, R. Hulme and D. A. Humphreys, J. Chem. Soc. (A), 1971, 341.
- 7 K. D. Abney, G. R. Ball and P. G. Eller, J. Fluorine Chem., 1991, 51, 165.
- (a) M. Couzi, J.-C. Cornut and P. Van Huong, J. Chem. Phys., 1972, 56, 426; (b) B. Bonnet, C. Belin, J. Potier and G. Masherpa, C. R. Séances Acad. Sci., 1975, C281, 1011; (c) B. Bonnet and G. Mascherpa, Inorg. Chem., 1980, 19, 785.
- 9 R. J. Gillespie and K. C. Moss, J. Chem. Soc. (A), 1966, 1170.
- 10 (a) A. Commeyras and G. A. Olah, J. Am. Chem. Soc., 1969, 91, 2929; (b) D. Brunel, A. Germain and A. Commeyras, Nouv. J. Chim., 1978, 2, 275.
- 11 C. J. Hoffmann, B. E. Holder and W. L. Jolly, J. Phys. Chem., 1958, 62, 364.
- (a) P. A. W. Dean and R. J. Gillespie, J. Am. Chem. Soc., 1969, 91, 7260; (b) P. A. W. Dean and R. J. Gillespie, J. Am. Chem. Soc., 1969, 91, 7264; (c) J. Bacon, P. A. W. Dean and R. J. Gillespie, Can. J. Chem., 1969, 47, 1655; (d) J. Bacon, P. A. W. Dean and R. J. Gillespie, Can. J. Chem., 1970, 48, 3413.
- 13 (a) M. Hachoumy, PhD Thesis, in Université Louis Pasteur, Strasbourg, 1995; (b) J. Sommer, J. Bukala, M. Hachoumy and R. Jost, J. Am. Chem. Soc., 1997, 119, 3274; (c) J. Sommer and J. Bukala, Acc. Chem. Res., 1993, 26, 370.
- 14 J. Cueilleron and Y. Monteil, Bull. Soc. Chim. Fr., 1965. 2172.
- 15 R. J. Gillespie and J. Liang, J. Am. Chem. Soc., 1988, 100, 6053
- 16 (a) D. Mootz and K. Bartmann, Angew. Chem., 1988, 100, 424; (b)
 D. Mootz and K. Bartmann, Angew. Chem., Int. Ed. Engl., 1988, 27, 391; (c) D. Mootz and K. Bartmann, Z. Naturforsch., B, 1991, 46, 1659.
- 17 G. A. Olah, Y. Halpern, J. Shen and Y. K. Mo, J. Am. Chem. Soc., 1973, 95, 4960.
- 18 J. Sommer, J. Bukala and R. Jost, unpublished results.
- 19 P. Rimmelin, S. Schwartz and J. Sommer, Org. Magn. Reson., 1981, 16, 160.
- 20 C. Leibovici, Int. J. Quantum Chem., 1974, 8, 193.
- 21 G. H. F. Dierksen, W. von Niessen and W. P. Kraemer, *Theor. Chim. Acta*, 1973, 31, 205.

Paper 9/01720H